REFERENCE MANUAL

Z8671

SINGLE-CHIP INTERPRETER
BASIC/DEBUG SOFTWARE

Preface

This manual describes the Basic/Debug interpreter, a
version of Tiny Basic resident in the internal ROM of the
28671 Single-Chip Interpreter. The first three sections
describe Basic/Debug's design considerations, its self-
contained editor and language syntax. Sections 4 and 5
give interactive debugging instructions and suggest program-
ming methods that speed up execution time and conserve memory
space. The final sections discuss the memory environment and
Basic/Debug's interactions with interrupts and external
Input/Output drivers.

Because Basic/Debug is a subset of Dartmouth Basic, most
of the material covered in this manual will be familiar to
Basic programmers. However, Basic/Debug has greater
responsibilities than other Basic interpreters. The 28671
has no -other operating system software and therefore depends
heavily on Basic/Debug to interact with its environment.
Because the Basic/Debug interpreter is stored in the
internal ROM of the Z8671, it is defined within the unique
hardware characteristics of the microcomputer chip.

This manual introduces the 28671 hardware environment
by describing Basic/Debug's interfaces with machine language
code, the memory environment and interrupts. However, to
fully utilize the Z8671, more detailed technical knowledge is
needed. For example, before a Basic/Debug program can access
a machine language subroutine, an assembly language version must
be developed, assembled, tested, and stored in the Z8671 system
memory. These processes are described in the 78 PLZ/ASM
Language Manual (part number 03-3023-02). Three other helpful
documents are The Z8 Microcomputer Preliminary Technical Manual
(part number 03-3047-02), the Z8671 Product Specification (part
number 00-2180-01), and the application note entitled A Seven-Chip
Computer (part number 00-2151-01).

SECTION 1

SECTION 2

SECTION 3

Contents

GENERAL INFORMATION .

e
. . [.
B W N -

Design Considerations ..ceeeeescscescccencns
Basic/Debug's Execution Modes ...cccecoccecs
Program Line SyntaX ...ceecscccccssssccnscssns
The Basic/Debug EQIitorevececoncscccosccs

ELEMENTS OF A BASIC/DEBUG EXPRESSION .¢ceccoceses

Introduction ...
Number Handling
Constants
Variables
Operators
Memory References - Addressesccecceoscs
Functions

2.7.

® s e e s s 0 c0 e s ses eGSR ee s

e e v e s 0 es st srse 000

e ec e 0 s 0 s ev 000 e sE 0N

Ces e 000000000000 eeese 0000

1 Logical FunctionNscicecesccccccse
2.7.2 Machine Language Functions¢c..

Formal Syntax for EXpressions ...ccececcescss

BASIC/DEBUG STATEMENT DEFINITIONS ..cceesvancccee

HHEHWYWO~IMUT®WN -~

T
BWN O

WWWWwWwWwwWwwWwwwwwww

Introduction ...

The
The
The
The
The
The
The
The
The
The
The
The
The

GO€ Command

L A I I I R R N I R

GOSUB Command ...ceecescocccccscnccncnscs

GOTO Command

e e s s eser o s 00cssss e

IF/THEN Commandcceceecscccccscscacsss

INPUT and IN
LET Command
LIST Command
NEW Command

ComMANdS secessssssasesesss

PRINT Command ...ccccccecsosncancccnscasce

REM Command

RETURN COmMMANd ceeseesscocssoscscsssssses

RUN Command
STOP Command

I A I I I R I N N A A I RN A)

CONTENTS (cont.)

SECTION 4 ERRORS AND INTERACTIVE DEBUGGING ..cceececccacsss

4.] ErrOIS .ueeceecsoccsscssasscsssesssssescnnsncs
4.2 1Interactive Debugging ..ecciceececsccccccanes

SECTION 5 EXECUTION SPEED V.S. MEMORY SPACE .cccceeeaccccnes

5.1 Introductionceeeieccccscccscccsssscrccs
5.2 Conserving Memory SPACe ..eeeceeseccsscoscssns
5.3 Improving Execution Time .iececscocsccccecscs

SECTION 6 THE MEMORY ENVIRONMENT ..cceceecseccccsscscscscssasnas

1] Memory StrUCLUre .iieeecccsscacccossssccscnss
2 Initialization and Automatic Start-up
3 Program FOrmatccecececcescccsncccecncnnsnses
4 The Top Page 0f RAM ...cceecececccccsancanas
5 Pointer Registers - RAM SysStemceceoeeee
6 Register Management for a No-RAM System.....
7 The MEeMOYrY M3P cestosccsssssococssscsccssanscs

SECTION 7 THE CONSTANT BLOCK, INTERRUPTS, AND I/O DRIVERS .

1 The Constant BlOCK civeececosccccacsssnsasoss
2 InterruptsS ccoeeecerecccsccscsacscssscsassssecs
e3 I/0 DrivVErS teiessecscesoncccncssassosssancses
4 Binary I/0 ciececececcacccnsaasansssoscsnssca

APPENDIX A SYNTAX SUMMARY ..cccceescccscorsonnnssasanscaccccs
APPENDIX B BAUD RATE SWITCH SETTINGS ...cccececcccncccccsncs

APPENDIX C ERROR CODES SUMMARYcceeveccscvoscsccssonscns

Section 1

General Information

1.1 Design Considerations

The original Basic developed at Dartmouth College is
designed for people who have no previous experience with
computers. Because Basic/Debug is a descendant of Dartmouth
Basic, it has similar syntax and is easy to learn and use.
However, Basic/Debug is designed specifically for process
control. Some Dartmouth Basic features which are inappropriate
to 28671 applications have been left out of Basic/Debug. Among
these are trigonometric and other transcendental functions,
array and character string handling, and fractional numbers.

To further conserve memory space, all redundant commands and
statement types which can be duplicated by combining other
commands have also been eliminated.

However, Basic/Debug allows fast hardware tests,
examination and modification of any memory location or
input/output port, bit by bit examinations of any port, bit
manipulation, and logical operations. The Basic/Debug
interpreter can process both decimal and hexadecimal values for
input and output. A Basic/Debug program may also access
machine language code as either a subroutine or a user-defined
function.

Once the application program has been developed and
tested, the 28671 system may be converted from development to
automatic mode. When the developed program is stored in a
special location in memory, the Basic/Debug interpreter will
execute it every time the system is powered up or reset.

1.2 Basic/Debug's Execution Modes

Basic/Debug executes commands in one of two modes: run or
immediate. The system is ready to accept a command when the
Basic/Debug prompt, a colon, appears at the left edge on a new
line at the terminal. To give an instruction in the immediate
mode, enter a command keyword, for example, PRINT. The command
is executed when the carriage return key is pressed. The
command PRINT will leave one line blank on the terminal before
the prompt appears on a new line.

Programs are edited and interactively debugged in the
immediate mode. Some Basic/Debug commands, such as RUN, LIST,
and NEW, are used almost exclusively in the immediate mode.
Others, such as GOTO and LET, are used in both modes.

To enter the run mode, enter the command RUN in the
immediate mode. If there is a program in memory, it is
executed. The system returns to the immediate mode when
program execution is complete or interrupted by an error.

1.3 Program Line Syntax

A program is a series of instructions which, when executed
sequentially by the computer, accomplishes a specific task. It
is entered into memory one line at a time. This section
describes the elements of a program line as the computer reads
them from left to right. A program line consists of a line
number and a command statement, as shown below:

100 PRINT "HELLO"

The line number indicates that this instruction is part of
a program and should not be executed immediately, so
Basic/Debug stores the line in memory. Line numbers also
indicate the sequence in which the instructions are to be
executed. Therefore, if other lines are already stored in
memory, Basic/Debug inserts the new line in its numerical place
among them, Only values in the range 1 to 32767 are accepted
as valid line numbers.

At the terminal device, Basic/Debug separates the line
number from the command statement by one space. In memory,
however, no space is stored between the line number and the
statement. Therefore, if more than one space is entered
between the line number and the statement at the terminal,
Basic/Debug appears to ignore the extras. If no space is
entered, Basic/Debug inserts one before listing the line at the
terminal.

Several statements may follow a single line number if they
are separated by colons. Packing several commands on one line
conserves memory space. The number of commands in the line is
not limited, but the line may not contain more than 130
characters,

Basic/Debug ignores the distinction between upper and
lower case letters. Therefore PRINT, PrInT and print are all
equivalent to Basic/Debug. But in this manual, all example
statements are shown in upper case for clarity.

Generally, the command statement has two parts: the
command keyword and an argument. In the example line above,
PRINT is the command keyword and "HELLO" is the argument.
However, Basic/Debug recognizes a wide variety of statements in
which either keywords or arguments are omitted, as shown in the
following list of valid statements:

PRINT

IF C <> USR{A) %500
€%1020 = 100

"THE ANSWER IS";X

Basic/Debug recognizes fifteen keywords. Each specifies a
statement type which performs one of three actions: assignment
to a variable (LET), input or output (INPUT, IN, PRINT), or
control flow (IF, GOTO, GOSUB, RETURN, GO@). In the sample
program line above, a space separates the keyword PRINT from
the argument "HELLO". Although it makes the statement easier
to read, the space is unnecessary. Within the statement
portion of a program line, Basic/Debug ignores all spaces. Any
spaces entered remain in the program and take up memory space,
however, Basic/Debug does not recognize that spaces delimit or
separate parts of the statement. It looks for other clues
which are specific to the command keyword. These delimiters
are discussed as each command is defined in Section 3.

The argument portion of a statement may be an expression
or, in some cases, another statement. An expression specifies
a number or a computation resulting in a number. Elements of
expressions are discussed in Section 2. Below are examples of
valid expressions:

(4096)
A¥B*C

€%1020
1G*100

1.4 The Basic/Debug Editor

Basic/Debug supports interactive debugging with a
self-contained line editor. It also allows elimination of
typing and other errors as a program is entered. Editing is
done in the immediate mode. To print a program currently
contained in memory, give the command LIST. Then examine the
program and make changes and additions using the techniques
described below.

Basic/Debug stores program lines in line number sequence.
If a line is typed with the same number as a line already in
memory, the new line replaces the old one. 1If only the line
number is entered, the line is deleted from memory. Once a
line is stored in memory, the only way to change it is to
retype the line.

Until the carriage-return key is pressed at the end of the
line, the characters entered are temporarily stored in a line
buffer. If an error is detected in a line before it is stored
in memory, correct it by backspacing through the line buffer to

1-3

the mistake and retyping. Backspace by pressing the backspace
key or by holding down the control key and pressing H. Each
backspace keystroke deletes one character from the line buffer.
If more backspaces are entered than there are characters in the
line buffer, Basic/Debug deletes the whole line and retypes the
prompt on the next line.

If it is necessary to delete a whole line before entering
it in memory, it is quicker to press the escape key than to
backspace through the line buffer. An escape keystroke cancels
the contents of the line buffer.

Although the editor is most useful for changing program
lines, it can correct an immediate command before it is
executed. It can also correct any user input required during a
program run. The codes Basic/Debug recognizes for backspace
and cancel are stored in the constant block and may be changed
to support a special terminal or application. Section 7
describes how to alter the constant block.

Section 2
Elements of a Basic/Debug Expression

2.1 Introduction

Expressions represent the numeric values Basic/Debug needs
to perform a task. An expression consists of one or more of
the following elements:

® constants

e variables

e operators

e memory references
e function calls

The elements in a single expression are evaluated together
when the statement is executed. The evaluation produces a
single numeric value to be used in the execution of the
instruction.

2.2 Number Handling

All calculations are performed in two eight-bit registers,
require sixteen-bit values, and return sixteen-bit results.
Basic/Debug adds a high-order byte of zeroes to any one-byte
value before the calculation takes place. When a result
exceeds sixteen bits, it is truncated and the excess
significant bits are discarded.

All numeric values are internally represented in
sixteen-bit binary two's complement form. 1In two's complement
form, a negative number -n is represented by the bit pattern
for 65536 - n. Therefore, a negative number has its high order
bit turned on.

Numerical values range from -32768 to +32767. 1If a
computation results in a value beyond the negative range, the
answer is printed as a positive number. 1If a computation
result is higher than the positive range, a negative number is
printed. Table 2-1 shows examples of constants beyond the
normal printing range of Basic/Debug.

Table 2-1. Basic/Debug Numeric Representation

Binary Hex Unsigned Signed
Decimal Decimal

0000 0000 0000 0000 0000 0 0
0000 0000 0000 0001 0001 1 1
1111 1111 1111 1111 FFFF 65535 -1
0111 1111 1111 1111 7FFF 32767 32767
1000 0000 0000 00OCO 8000 32768 -32768
1000 0000 0000 0001 8001 32769 ~22767
0000 0001 0000 0OO0Q 0100 256 256
0000 0010 0000 0000 0200 512 512

~ Hexadecimal values are used frequently for addressing
because hardware boundaries often occur on even hex addresses.
Unsigned integers between 0 and 65536 may be entered to address
memory locations. However, only values in the range of +32767
to -32768 are printed normally at the terminal. A method for
printing values beyond the range is presented in Section 2.5.

2.3 Constants

A constant is a value that does not change during the
program run and must be represented by a number. In
Basic/Debug, a constant may be either a decimal or a
hexadecimal value. The digits used to represent hexadecimal
values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, ¢, D, E, and F.
The hexadecimal value A is equivalent to the decimal number 10.
10 in hexadecimal is equal to 16 in decimal. BRasic/Debug
requires a signal character, %, before a hexadecimal value,
Any number not preceded by a percent sign is assumed to
represent a decimal value.

A negative number is indicated by the minus sign, "-".
Technically, this combines a constant with an operator to make
an expression, and Basic/Debug treats it as such. This concept
is important when omitting the PRINT keyword from a print
statement (see Section 3.10).

Basic/Debug recognizes only whole numbers. Fractions
cannot be entered, and the fractional part of any result is
discarded. The following are examples of valid decimal and
hexadecimal constants:

0 %

123 $7B
256 $100
32766 $7FFE
32768 %8000

2.4 Vvariables

A variable is a two-byte location where a numeric value
may be stored. It is referenced by a single letter variable
name. A variable may be changed or updated with a new value at
any time.

Basic/Debug supports 26 variables. Each letter of the
alphabet is used as a variable name. Variable storage is not
cleared before a program is run, so it is possible to pass
values from one program to another in variable storage.

The memory location of variable storage is fixed during
the power-on-reset procedure of the 28671 and depends upon
the memory configuration available at that time. Variables are
usually stored in the top page of RAM. Within the page,
variables reside in locations 34-85. Two bytes are assigned to
each variable. For example, variable A is stored in location
34-35, and variable Z is stored in location 84-85.

However, some Z8671 systems do not have any RAM. 1In this
case, the variables are stored in 78671 registers 34-85, which are
shared with the GOSUB stack. In a No-RAM system, variables may
be destroyed by the GOSUB stack. See Section 6.6 for a description
of memory management in a No-RAM system.

2.5 Operators
An operator indicates a calculation to be perfomed when an
expression is evaluated. Basic/Debug supports two sets of

operators: arithmetic operators and relational operators.

Basic/Debug recognizes the following traditional operators
for arithmetic functions:

+ addition

- subtraction

* multiplication
/ division

Operations are performed from left to right. If all four
appear in a single expression, multiplication and division are
performed first, followed by addition and subtraction. This
may be altered by the use of parentheses. For example:

3%24-18/3+10 = 76
3*%(24-18)/(3+10) =1

Basic/Debug does not support fractional numbers, therefore, the
remainder of the division in the second line is discarded.

A special division operator, the backslash "\", does
unsigned division. It indicates that the dividend is to be
treated as an unsigned integer in the range 0 - 65535. For
example, the statement PRINT 40000\3 returns the correct
answer, 13333. But PRINT 40000/3 returns -8512 because the
signed integer for 40000 is -25536.

Because it treats the dividend as a sixteen bit positive
number, the backslash can perform a logical right shift on a
bit pattern, as shown below:

(-2)/2
(=2)\2

An attempt to divide by a negative number with the backslash
operator gives undefined results,

-1
32767

The backslash operator may also be used to print values
higher than +32767. Assuming that N is a value out of normal
printing range, the following statement will print N:

PRINT N\10; N-N\10*10

Relational operators specify conditional relationships in
an IF statement. The six relational operators recognized by
Basic/Debug are:

equal

less than or equal
less than

not equal

greater than

greater than or equal

VVAAALR
v

2.6 Memory References -~ Addresses

Basic/Debug can directly address the 28671 internal
registers and all external memory. The contents of any address
may be examined and RAM may be altered. The location is specified
by a memory reference, which has two parts: a signal character
and an address value. A memory reference may be used in a
Basic/Debug expression anywhere a variable may be used.

Any byte may be referenced by placing the byte signal
character, "@", in front of the address. For example, €%1000
addresses the byte stored in location 4096. Byte references
may be used to modify a single register in the CPU, control I/O
devices, or access any memory location.

Sixteen-bit words are referenced with an address preceded
by the word signal character "1T". This accesses the most
significant byte at the address given plus the least
significant byte at the next higher address., Modification of
pointer register values requires a word reference.

The address value may be a variable, a constant, a hex
value, an AND or USR function, an expression in parentheses,
or, for indirect addressing, another memory reference. An
expression is evaluated at run time and its value used as the
memory address or register number to be referenced. For
example, if the address needed depends on the value of C,
Basic/Debug can perform the calculation:

145 LET @(C*100) = A

Indirect addressing can vector Basic/Debug through several
addresses to find required information. For example,

PRINT 118

The first signal character "?" indicates indirect addressing.
Register R-8 is a sixteen bit pointer. It always contains the
address of the first byte of the program in memory. To execute
this instruction, Basic/Debug finds the address in R-8, then
goes to that address and prints its contents. Pointer registers,
which are discussed in detail in Section 6, require word
references, as shown in the example above.

To modify 28671 registers, use addresses in the range of
either 0-127 or 240-255. The 78671 has no registers implemented
between 127 and 240. With this exception, Basic/Debug
references registers between 00 and FF (hex), and external
memory between 0100 and FFFF (hex). Do not use a word
reference at address O0OFF or FFFF because such a reference
extends across internal/external memory boundaries, and returns
a non-contiguous second byte.

Memory references may be used to implement arrays. Set
aside a block of RAM to hold the array, and indicate the
address of an element of the array by adding the element number
to the array's starting address. For example, if an array of
bytes starts at C000 hex, the following statements would define
the starting address of the array and reference its elements:

A = $C000 ¢REM ARRAY STARTING ADDRESS
e (A+J)=99 :REM ELEMENT J = 99
@(A+1)=@(A+J)+@(A+K) :REM A(I)=A(J)+A(K)

2.7 PFunctions

Basic/Debug supports two functions: AND, which performs a
logical AND, and USR, which calls a machine language
subroutine. These functions must be part of an expression. A
function is treated as an operand, the same as a variable,
constant, or memory reference. It does not change the order of
arithmetic operations.

2.7.1 Logical Functions

AND performs a logical AND. It can be used to mask, turn
off, or isolate bits.

AND (expression, expression)

The two expressions are evaluated, then their bit patterns
are ANDed together. For example, AND (3,6) returns 2. If only
one value is included in the parentheses, it is ANDed with
itself.

To perform a logical OR, complement the AND function by
subtracting each element from -1. For example, the function
below is equivalent to the OR of A and B:

-1-AND(-1-A, -1-B)

The arithmetic sum may also be used for the logical OR
operation if the bits to be added are known to be previously
zero.

2.7.2 Machine Language Punctions

An application often requires a subroutine which can be
performed more quickly and efficiently in machine language than
in Basic/Debug. The Z8 PLZ/ASM Language Manual (part number
03-3023-02) and the Z8 Assembler User Guide (part number
03-3048-02) describe the process of developing Z8 Assembly
Language programs.

Basic/Debug can call a machine language subroutine which
returns a value for further computation by the USR function.
To call a subroutine which returns no value, use the GO@
command described in Section 3.2.

After the machine language subroutine is assembled, store
it in memory that is not otherwise occupied by the Basic/Debug
program or stack. The available memory space is indicated by
the pointer registers described in Section 6. Use the address

of the first instruction of the subroutine as the first
argument of the USR function, as follows:

USR (%2000)

Basic/Debug executes whatever it finds at this address. 1If
there is no machine language routine at the location, the
result is undefined.

The address may be followed by one or two values to be
processed by the subroutine. For example:

USR(%2000,256,C)

The address and arguments are expressions separated by
commas. Basic/Debug passes the values to the subroutine in
registers R18-19 and R20-21, and expects the resulting value to
be returned in R18-19. This resulting value is used to finish
the evaluation of the expression.

The registers in which the arguments are passed depend on
the number of arguments inside the parentheses. For example,
the function USR($700,A) calls the subroutine at $700 and
passes it variable A in register R18-19. However, function
USR(%$700,A,B) passes A in R20-21 and B in R18-19. 1In either
case, the machine language subroutine must leave the return
value in R18-19.

Table 2-2. USR Arquments and Registers

call R18-19 contains R20-21 contains
USR (%700, A, B) B A
USR (%700, A) A A

The machine language subroutine must conform to the
following requirements: it must end with a RET (hex AF)
instruction, it must leave the value to be returned in R18-19,
and it may use any of the free registers listed in the Memory
Map in Section 6. The register pointer is set to point to
R16-31 on entry to the routine, so the arguments may be fetched
from working registers rj-r3 and ry4-rg, and the return value
left in rp-r3 (for a discussion of the working register feature
of the 28671 refer to the Z8 Microcomputer Preliminary Technical
Manual, part number 03-3047-02).

2.8 PFormal Syntax for Expressions
The syntax for Basic/Debug expressions is defined below in

a meta-language descended from Backus-Naur form. The language
follows the rules given at the beginning of Section 3.

expression => [add _op] term (add op term)*

signed_expression
=> add_op term (add_op term)*

add_op => "+' | -

term => factor (mult op factor)*
mult op => 'Rt/ !

factor => variable

=> '@' factor

=> '"T' factor

=> number

=> '$' hex number

=> AND '(' expression [',' expression] ')'
=> USR '(' address [',' argl [',' arg2]] ')'
=> ' (' expression ')'

Section 3
Basic/Debug Statement Definitions

3.1 Introduction

Basic/Debug recognizes fifteen command keywords. The two
most commonly used keywords, LET and PRINT, may be omitted when
their arguments imply them. For example, a character string
enclosed in quotation marks can only be processed by a PRINT
command, so a quotation mark following a line number implies
the PRINT keyword.

The first section of each of the following command
descriptions defines command syntax. The meta-language used to
define the syntax follows the rules below:

Syntactic constructs are denoted by lower case English
words or phrases not enclosed in any special characters.
Examples are command, stmnt, and gosub_stmnt.

The basic symbols of the language are keywords, written in
upper case, and special characters, enclosed in quote
marks. Examples are ',' LET 'T' NEW.

Possible repetition of a construct is indicated by
appending either a '+' indicating one or more occurrences,
or a '*', indicating zero or more occurrences. For
example, the definition of number as digit+ means that a
number consists of one or more digits.

Parentheses group a number of constructs together so that
a repetition symbol (+ or *) may be applied to the group.

Square brackets denote optional items. The construct
within the brackets may appear either zero or one time.

The vertical bar '|' signifies that one of several
alternate constructs may be specified.

Curly brackets, '{' and '}', surround an English
description of an otherwise indescribable construct.

The second section of each description lists sample
statements which demonstrate the variety of commands possible
within the syntax. The third section describes any special
features of the command. The commands are listed in
alphabetiral order for easy reference. Statement syntax is
summarized in Appendix A.

Goe

Syntax
go_stmnt => GO '@' address [',' arg_1 [',' arg_2]]
address => expression
arg 1 => expression

arg_2 => expression

Examples:

GO@RE000, A, B
GO@%700

The GO@ command unconditionally branches to a machine
language subroutine. It may only be used when the subroutine
returns no value.

The first argument is the address of the first byte of the
subroutine. The last two optional arguments are used to pass
values to the subroutine. Unlike the USR function defined in
Section 2.7.2, the contents of R18-19 are discarded and no
value is returned. Otherwise, GO@ passes arguments to the
subroutine in the same way USR does, according to the following
table:

Table 3-1. GO Arguments and Registers

call R18-19 contains R20-21 contains
GO 8%700, A, B B A
GO es%700, A A A

GOSUB

Syntax:

gosub_stmnt => GOSUB expression

Examples:

GOSUB 50
GOosuB C
GOSUB B*100

Often an application requires that a few lines of code be
executed at several points in the program. Rather than repeat
these lines at each location, isolate them at the beginning of
the code. This subroutine may be called at any time during the
program run by the GOSUB command.

Unlike Dartmouth Basic, the item following the keyword
GOSUB may be either the number of the first }ine of subroutine
or an expression which evaluates to the subroutine line number.

The subroutine must be terminated with a RETURN
instruction. GOSUB stores the number of the next line to be
executed where RETURN can find it to restart normal sequential
execution. GOSUB must be the last instruction on its line.

One subroutine may call another. The RETURN instruction
at the end of the second subroutine returns execution to the
first subroutine. In this way, subroutines may be nested to
the depth allowed by the memory available to the GOSUB stack.

GOTO

Syntax:

goto_stmnt => GOTO expression

Examples:

GOTO 100
GOTO &FF
GOTO B*100

GOTO unconditionally changes the sequence of program
execution. Unlike the Dartmouth Basic, Basic/Debug accepts
expressions following the keyword GOTO. This feature allows a
variable to be used to select a line number. For example, if
the variable G will equal 1, 2 or 3 when line 100, 200 or 300
respectively is to be executed, use the following instruction:

GOTO G*100

GOTO is often used in the immediate mode for interactive
debugging because GOTO enters the run mode. Unlike the RUN
command, GOTO can specify the line number where execution is to
begin. For example, when an error occurs and the following
message appears at the terminal:

I ERROR AT LINE 4096

Line 4096 may be retried by entering the following command in
the immediate mode:

GOTO 4096

Because GOTO unconditionally changes the sequence of
execution, any statements that follow it on a program line can
not be executed. Therefore GOTO must always be the last
statement on a line.

Szntax:

if stmnt => IF expression relational op expression
[THEN] apodosis

relational op
=_>' P ’ LS | tey! | Tt] 1¢=" l ry=1

apodosis => number | statement line

Examples:

IF A>B THEN PRINT "A>B"

IF A>B "a>B"

IF X=Y IF ¥Y=Z PRINT "X=2Z"

IF A<>B I=0:J=K+2:G0OTO 100

IF 1=2 THEN this part never matters

The IF/THEN command is used for conditional operations and
branches. The apodosis may be another statement, a line number
indicating another statement, or a list of statements separated
by colons. Any of these statements may be another IF. The
keyword THEN may be omitted to conserve memory space.

IF compares the value of the first expression to the value
of the second. If the relationship indicated by the relational
operator is true, then the apodosis of the instruction is
executed. If the relationship is not true, then the next
sequential instruction is executed.

There are only two conditions in which the keyword THEN
may not be eliminated. It may not be omitted if the second
expression ends with a decimal or hexadecimal constant and the
line number of a statement is used. For example:

IF X <1 THEN 1000
The above statement requires a THEN to separate the numeric
second expression from the line number. However, THEN may be

eliminated from the statement by reordering the expressions:

IF 1 > X 1000

IF/THEN

IF/THEN

The second condition in which THEN may not be omitted is
when the second expression ends with a hexadecimal constant,
and the statement part is a LET statement in which the keyword
has been omitted and the variable is between A and F. For
example:

IF Z > %1000 THEN A = Z

No number of spaces in place of the THEN will prevent the
interpretation of the variable letter as a hexadecimal value
because spaces are ignored. THEN must be included to separate
the expression from the apodosis.

INPUT/IN

Syntax:

input_stmnt => INPUT variable (',' variable)*
in stmnt => IN variable (',' variable)*

Examples:

INC, E, G
INPUT A

These statements first request information from the
operator with the prompt "?", then read the input values from
the keyboard and store them in the indicated variables. They
are two of the three commands which assign an expression to a
variable.

Either command accepts values for a list of one or more
variables, If the user does not input as many values as are
needed, both commands repeat the prompt until the required
number of values are entered. The commands differ in the way
they handle extra values entered by the operator.

INPUT discards any values remaining in the buffer from
previous IN, INPUT, or RUN statements, and requests new data
from the operator. 1IN uses any values left in the buffer
first, then requests new data.

Unlike Dartmouth Basic, Basic/Debug accepts completely
general expressions as input. It also accepts variables which
have already been assigned a value. A variable assigned a
value early in the list may be used to define a variable later
in the list. For example, the statement INPUT C,A can process
10,C*5 as valid input.

When a program requires the operator to input a list of
values, he may need to separate each item by a comma. Commas
may be omitted if they are not needed to direct interpretation.
Spaces are ignored. The following examples show how delimiters
may be used to change the interpretation of input values:

? $123,A,ND(56) (hex 123, variables A,N,D, decimal 56)
? %12 3AND(56) (hex 123A, variables N, D, decimal 56)
? %$123,AND(56) (hex 123, value of 56 ANDed to itself)

INPUT/IN

Because Basic/Debug has only one input line buffer, INPUT
and IN execute differently in the immediate and run mode. 1In
the immediate mode, the user response overlays and destroys the
INPUT or IN command that requested it. Consequently, no matter
how many variables are listed after the keyword INPUT, only the
first one is assigned to the input data.

However, IN may assign lists of variables and expressions
in the immediate mode if both lists are alternately included in
the command line. For example:

IN A, 10, B, 15, C, 20

When the above line is executed in the immediate mode,
Basic/Debug fetches the first variable, A, from the keyboard
buffer, and advances the buffer pointer. INPUT at this point
would request a new input line from the keyboard, but IN, which
uses all values in the buffer before issuing the "?" prompt,
will return to the buffer and assign the value 10 to A. The
process continues until all variables and values are used up.
If the command line is closed with a variable, the "?" prompt
is issued.

Generally, it is easier to use LET to assign values to
variables in the immediate mode.

To help the operator enter the correct number and kinds of
values, IN and INPUT are usually preceded by a PRINT statement
describing the requirements. When the PRINT statement is
terminated with a semicolon, the INPUT prompt "?" will be
listed on the same line and appear to punctuate the message.

Although Basic/Debug does not support character string
functions, the INPUT command may be used to accept a single
letter as a user response, as shown below:

100 PRINT "PLEASE TYPE YES OR NO"
110 LET N=Y-1

120 PRINT "DO YOU UNDERSTAND";
130 INPUT N

140 TF N=Y THEN PRINT "GOOD!"

In this example, the value of Y does not matter. If the
operator types Y, YES, YEAH, or YAH, then the variable N equals
Y. 1If the operator type N, NO, or NOT YET, then variable N is
unchanged and not equal to Y. To check for letters other than
Y or N, use an unusual value for Y, such as -32323, and check
both ¥ and Y+1 after input.

LET

Syntax:
let_stmnt => [LET] left_part '=' expression’
left_part => variable | '@' factor | 'T' factor

Examples:

LET A = A+l
@ 1020 = 100
T8 = $100*C

LET assigns the value of an expression to a variable or
memory location. The left portion of the statement may be any
alphabetic character A-Z, a memory reference, or a register
reference. The value of the expression is either stored in the
memory location, or placed in the variable's storage location,
to be used at any subsequent appearance of the variable.
Because the equal sign makes the syntax of this command unique,
the LET keyword may be omitted.

A variable's value may be re-calculated by using the same
variable on both sides of the LET assignment, as in the
incrementing statement below:

LETB=B+1

LET may be used to store values in memory by using a
memory reference on the left side of the LET assignment, as
shown below:

LET€1024=B/2

When this statement is executed, the memory reference is
calculated first, then the expression is evaluated and its
value stored. A word memory reference stores the most
significant byte in the location addressed. The least
significant byte is stored in the next higher address. Take
care when modifying internal registers or the area where the
program is stored in memory because improper changes could have
catastrophic results.

LIST

Syntax:

list_stmnt => LIST [starting_linel',' ending_line]]
starting line => expression

ending_line => expression

Examples:

LIST
LIST 200, 1000

This command is used in the interactive mode to generate a
listing of program lines stored in memory on the terminal
device. The optional line numbers specify the range of lines
to be listed. If only one number is given, only that line will
be listed. 1If ending line is included, only starting line
through ending line inclusive will be listed. A LIST command
without arguments lists all the lines in the program.

The LIST command is generally used in the immediate mode,
however, it may be used in the run mode for simple text
processing. Because Basic/Debug does not examine program lines
after the line number until runtime, it can process text, as
shown in the following program:

3-10

LIST

100 REM THIS PROGRAM PRINTS A MESSAGE N TIMES
110 IF N>0 THEN 200

120 : PRINT "HOW MANY TIMES";

130 : INPUT N

200 REM BEGIN LOOP

210 : LET N=N-1

220 : LIST 1000, 1070

230 : IF N>0 THEN 210

240 STOP

1000/ This is a message saved in memory. It will be

1010 |printed when the program is RUN. If you tried to
1020]execute lines 1000 to 1070 you would get an error
1030 |message. But in this program, lines 1000+ are not
1040 |executed, just LISTed.

1050 |

1060 | (Signed)

10701

Five lines of this program are indented to show program
structure and make it easy to read. The colon prevents
Basic/Debug from removing the spaces before the statement
portion of the line. When the program is executed, the message
will be printed exactly as it appears in lines 1000-1070,
including the vertical bars along the left edge. The vertical
bar is needed to indent line 1000; the others are included for
consistency. In summary, use a colon to indent an instruction
because Basic/Debug recognizes it as a statement delimiter, and
use the vertical bar to indent text lines because it is the
least distracting character to have printed down the left side
of a page.

NEW

Syntax:

new_stmnt => NEW

Example:
NEW

The NEW command resets pointer R10-11 to the beginning of
user memory, thereby marking the space as empty and ready to
store a new program. If this command is entered in error, take
heart, the stored program is not really gone. Although it may
not be modified, it may at least be listed by setting the line
number of the first line back to a very small number. Use a
LET statement in the immediate mode, as shown in the example
below:

LET 178=1
Although an attempt to run the program after this kind of

recovery may appear to work, there is no longer any memory
over-run protection, and the program may be destroyed.

Syntax:
print_stmnt =>

=>
delimiter =>
item =>
initial_item

=>
quoted string

=>

PRINT

PRINT [item (delimiter item)*] [delimiter]
initial item (delimiter item)* [delimiter]

l’| l l;|

quoted_string | expression | HEX '('expression'}'
'('expression')'

quoted string | signed_expression |

't { any character sequence, not containing

nulls, deletes, linefeeds, carriage returns,
escapes, backspaces or quotes}'"'

Examples:

PRINT HEX (255)
"THE ANSWER IS ";X
(A*100)

+%800 + 2

PRINT A, B, C, D, E

The PRINT command lists its arguments, which may be text
messages or numerical values, on the output terminal, The
delimiters used in the argument specify how the items are to be
printed on the screen.

Characters and spaces
listed exactly as they are

enclosed in quotation marks are
typed. Quotation marks are
unprintable., If a message must be punctuated with a quotation
mark, use the single quote or apostrophe instead. As mentioned
above, a character string enclosed in quotation marks implies
the PRINT command, so the keyword may be omitted. The PRINT
keyword without an argument or terminating delimiter generates
a blank line. Any PRINT instruction can be followed by a colon
and another statement.

When an expression is entered as the argument to the PRINT
command, Basic/Debug evaluates it and lists its decimal value
at the terminal. Only the significant digits are printed;
leading zeros and divisional remainders are not. PRINT treats
numbers as signed integers. A method for printing unsigned
values is presented in Section 2.5.

3-13

PRINT

To PRINT a hexadecimal value, use the syntax:
PRINT HEX (expression)

Basic/Debug evaluates the expression, and prints its
positive hexadecimal equivalent. The PRINT command cannot list
a negative hexadecimal number.

Unlike character strings, the HEX function must be
preceded by the PRINT keyword, as must any expression beginning
with a variable., However, the keyword may be omitted before an
expression if the expression is preceded by a "+" or "-". For
example, ~10 + 20 or +20 - 10 entered as statements print a
value of 10, but 20 - 10 results in an error message.

When a comma is used to delimit items in a PRINT
statement, a tab is generated between each item. The tab stops
are located at eight-space intervals across the screen. To
print left-justified columns, simply put all the items to be
printed on one line in one PRINT statement, and separate them
by commas. The first character of the data item will appear in
the column containing the tab stop. If the item is longer than
eight characters, Basic/Debug tabs to the next available stop
to print the next item.

To print one item directly after another without any
spacing, use a semicolon as a delimiter. For example, the
command :

PRINT"OUTPUT="; X

will print the value of variable X immediately after the equal
sign. If a PRINT statement is ended by a semicolon, no
carriage-return-linefeed is generated. The next item printed
by a subsequent statement will appear on the same line as the
item that preceded the semicolon. A comma at the end of a
PRINT statement will also suppress the carriage return
sequence, however, the next item to be printed appears at the
next eight column tab stop.

To print right-justified columns, as is necessary with
lists of figures, leading spaces must be added. Basic/Debug
can only print spaces enclosed in quotation marks. The
following example program adds leading spaces to N:

200 IF N<10000 THEN PRINT " ";
210 IF N<1000 THEN PRINT " ";
220 IF N<100 THEN PRINT " ";
230 IF N<10 THEN PRINT " ";
240 PRINT N

3-14

PRINT

Basic/Debug can print most control characters such as the
bell if they are contained in a quoted character string. The
following control characters cannot be pri